Molecular confirmation of CHARGE syndrome from umbilical cord blood stem cells from a death newborn and identification of a new mutation in the exon 29 of the CHD7 gene
نویسندگان
چکیده
CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities) is an autosomal dominant disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the CHD7 gene are the major cause of CHARGE syndrome. Here, we present a family who sought genetic counseling because of a newborn with dysmorphic features suggesting CHARGE syndrome. The baby died three months later. Afterwards, a molecular genetic testing for sequence analysis of the CHD7 coding region was performed with DNA extracted from umbilical cord blood stem cells confirming the diagnosis of CHARGE syndrome. Although the diagnosis is first suspected clinically, in the newborn case presented here, we illustrate the importance of the molecular testing to confirm the diagnosis, and to enable precise genetic counseling. Also, even though cord blood has been stored in private banks for more than ten years, there is as yet no routine clinical application of autologous (self-donation) hematopoietic stem cells from cord blood. Now, we illustrate for the first time the usefulness of umbilical cord blood stem cells for diagnosis and genetic counseling in a case that involve a dead propositus.
منابع مشابه
Cord Blood
Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and ...
متن کاملOnm-19: The Role of Cord Blood Preservationin Cell Therapy
s:3604:"During pregnancy, the placenta delivers "cord blood" to the baby through the umbilical cord serving as a lifeline of nourishment from the mother to baby. At birth, "cord blood" remains in the umbilical cord and placenta and until recently, had typically been discarded. The tragedy of this practice is that "cord blood" contains very special cells called "stem cells". Recent advances in m...
متن کاملOnm-21: General Principles of Collecting and Storing Cord Blood Stem Cell
Cord blood is the blood that remains in the umbilical cord and placenta following birth, which is usually discarded It contains red blood cells, white blood cells, platelets, and plasma, like blood. In addition, cord blood is a rich source of stem cells that may have potentially lifesaving benefits for your baby and family. The cord blood of baby serves as an abundant source of stem cells. Thes...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملPlatelet Rich in Growth Factors (PRGF): A Suitable Replacement for Fetal Bovine Serum (FBS) in Mesenchymal Stem Cell Culture
Background: Due to high differentiation potential and self-renewality, Mesenchymal Stem Cells are now widely considered by researchers in several diseases. FBS is used as a supplement in culture media for proliferation, differentiation, and other culture processes of MSCs, which is associated with transmission risk of a variety of infections as well as immune responses. PRGF derived from platel...
متن کامل